Math 462: Mathematical Models

Instructor:	Ruby Kim	Class Schedule:	MW 11-11:50am in 3866 EH $$
Email:	rshkim@umich.edu	Lab Schedule:	Fridays 11-11:50am in B745 EH $$
Office:	4843 East Hall	Office Hours:	TuTh 4-5pm or by appointment

Course Description

The focus of this course is the application of a variety of mathematical techniques to solve real-world problems. Students will learn how to formulate and analyze mathematical models that can be used to investigate complex phenomena in biology and the social sciences. Concepts and calculations, using applied analysis and numerical simulations, are emphasized. The course will consist of lectures, group discussions, and computer laboratory exercises, with Friday classes usually spent in the computer lab.

Prerequisites

Students are expected to have a solid foundation in differential equations (Math 216, 256, 286, 316, or equivalent) and linear algebra (Math 214, 217, 417, 419, or equivalent). Some prior experience with programming is useful but not required.

Homework and Quizzes

There will be weekly homework sets due on Fridays at 11am. Students are encouraged to discuss problems with each other, but the solutions handed in must be their own. Solutions should be written or typed neatly and uploaded to Gradescope in Canvas. Homework will be graded on a 3-point scale based on completion. Late homework will not be accepted unless previously discussed with the instructor. There will be short (10-minute) weekly quizzes after homework is due with problems taken from or inspired by that week's homework. Students may bring a hard copy of their homework to use as a reference.

Projects

There will be one midterm project and one final project for the course. For both projects, students will work in groups of 2-3 to address a problem of their interest using mathematical tools and analysis. For each project, students will submit a written report and give a 10-minute presentation. Detailed guidelines will be provided in Canvas.

Services for Students with Disabilities

If you need an accommodation for a disability, please let me know at your earliest convenience. Some aspects of this course, the assignments, the in-class activities, and the way the course is taught may be modified to facilitate your participation and progress. As soon as you make me aware of your needs, we can work with the Office of Services for Students with Disabilities (SSD) to help us determine appropriate academic accommodations. SSD (http://www.ssd.umich.edu) typically recommends accommodations through a Verified Individualized Services and Accommodations (VISA) form. Any information you provide is private and confidential and will be treated as such.

Academic Dishonesty

Any act of academic dishonesty as defined in the LSA Community Standards of Academic Integrity will result in an F in the course or a zero on the item in question, subject to the determination of the instructor.

Course Grade

Homework	25%
Quizzes	20%
Midterm project	20%
Final project	35%

Tentative Course Schedule

Week	Topic	Due
1	Mathematical Modeling Process	
2	Linear Models, Linearized Conceptual Models	HW0 on Friday
3	The Least-Squares Error, Modified Logistic Models	HW1 on Friday
4	Intro to Numerical Methods for ODEs	HW2 on Friday
5	SIR and SEIR Models	HW3 on Friday
6	Cellular Automata, Agent-Based Epidemic Models	
7	MIDTERM PRESENTATIONS	Midterm report by Friday
8	Enzyme Kinetics, Chemical Oscillators	HW4 on Friday
9	BREAK	
10	Periodic and Quasiperiodic Dynamics, Chaos	HW5 on Friday
11	Network Models	HW6 on Friday
12	Bounded Confidence Models, Opinion Dynamics	HW7 on Friday
13	Markov Chains, Queuing Models	
14	Scientific Computing	HW8 on Monday
15	FINAL PRESENTATIONS	
16	NO CLASS	Final report by Tuesday

The instructor reserves the right to change the content of the course material if needed.