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A B S T R A C T

The neurotransmitter dopamine (DA) is known to be influenced by the circadian timekeeping system in the
mammalian brain. We have previously created a single-cell differential equations model to understand the
mechanisms behind circadian rhythms of extracellular DA. In this paper, we investigate the dynamics in our
model and study different behaviors such as entrainment to the 24-hour light–dark cycle and robust periodicity
versus decoupling, quasiperiodicity, and chaos. Imbalances in DA are often accompanied by disrupted circadian
rhythms, such as in Parkinson’s disease, hyperactivity, and mood disorders. Our model provides new insights
into the links between the circadian clock and DA. We show that the daily rhythmicity of DA can be disrupted
by decoupling between interlocked loops of the clock circuitry or by quasiperiodic clock behaviors caused
by misalignment with the light–dark cycle. The model can be used to further study how the circadian clock
affects the dopaminergic system, and to help develop therapeutic strategies for disrupted DA rhythms.
1. Introduction

The mammalian circadian clock is a network of genes and proteins
in the suprachiasmatic nucleus (SCN) that drives 24-h oscillations in
important physiological functions such as the sleep–wake cycle, hor-
mone and neurotransmitter regulation, and physical activity [1–3]. The
circadian clock circuitry is highly complex and consists of interlocked
feedback loops. Oscillations are primarily driven by BMAL1-CLOCK
heterodimers, which activate the transcription of Period (PER) and
Cryptochrome (CRY) genes, which then encode proteins that inhibit
BMAL1-CLOCK [4]. An important secondary loop consists of orphan
nuclear receptors REV-ERBs and retinoic acid-related orphan recep-
tors (RORs), which are downstream products of the circadian clock
and modulate the Brain and Muscle ARNT-Like 1 (Bmal1) gene to
reciprocally influence circadian rhythms [5,6].

Many mathematical models have been created to study circadian
rhythms at the single cell level. Forger and Peskin [7] developed
a highly detailed and robust model of the circadian clock circuitry
including its responses to light perturbations. Leloup and Goldbeter [8]
created a model of mammalian circadian rhythms which they used
to predict clock behavior in different light–dark conditions. Hong,
Conrad, and Tyson [9] used a simple negative feedback model to
theorize a mechanism for temperature compensation. In animals with
variable body temperature, the circadian clock remains robust despite
temperature-related changes to chemical rates. Additionally, mathe-
matical models have been used to study synchronization of circadian
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rhythms across different cells. Garcia-Ojalvo, Elowitz, and Strogatz [10]
created a mathematical model of intercellular signaling in coupled
oscillators, and Strogatz [11] provides a detailed review of the long
history of coupled oscillator models.

While the molecular machinery of the mammalian circadian clock
is well established, the clock is capable of non-oscillatory or oscilla-
tory but non-periodic behaviors that are not fully understood. Mice
with genetic perturbations may show arrhythmic activity patterns [12–
15] and disruptions to the 24-h light–dark cycle result in oscillatory
behaviors that lose periodicity [16]. Such behaviors have important
clinical implications as they are strongly linked to a host of health
conditions, including metabolic and cardiac dysfunction [17]. Several
mathematical studies have previously explored non-periodic dynamics
in clock models. In [18], Gonze and Goldbeter studied quasiperiod-
icity and chaos in a model for circadian rhythms in Neurospora and
explored the influences of the waveform and amplitude of light input
on entrained versus non-periodic behaviors. In a model for circadian
rhythms in Drosophila, Kurosawa and Goldbeter [19] have shown
that quasiperiodic behaviors occur under the light–dark cycle when
the natural period of the clock is sufficiently far from 24 h. Several
other circadian models have also displayed quasiperiodic or chaotic
dynamics [20,21] but have not explored these behaviors in detail. In
this paper, we investigate periodic and non-periodic behaviors in a
mammalian clock model and study their influences on an important
neurotransmitter.
https://doi.org/10.1016/j.mbs.2021.108764
Received 28 June 2021; Received in revised form 9 November 2021; Accepted 26
Available online 21 December 2021
0025-5564/© 2021 Elsevier Inc. All rights reserved.
November 2021

https://doi.org/10.1016/j.mbs.2021.108764
http://www.elsevier.com/locate/mbs
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2021.108764&domain=pdf
mailto:rubykim@math.duke.edu
https://doi.org/10.1016/j.mbs.2021.108764


R. Kim and T.P. Witelski Mathematical Biosciences 344 (2022) 108764

u
d
r
a
i
r
R
e
t
H
c
D
R
e
o
m
s
e
i
a

t
e
t
s
(

w
i
f
i
t

𝑓

T
𝐵
m
a
B
a
s
a
𝑅
𝑓

There is evidence that the neurotransmitter dopamine (DA) is mod-
lated by the circadian clock, but not much is known about the un-
erlying mechanisms. DA is involved with learning, motivation, and
eward [22,23], and is associated with neurological conditions such
s Parkinson’s disease, schizophrenia, and hyperactivity [24–26]. Many
ndividuals with DA-related conditions also display disrupted circadian
hythms [27–29]. Ikeda et al. [30] have shown that REV-ERBs and
ORs regulate the expression of dopamine D3 receptors (DRD3). Chung
t al. [31] and Sleipness et al. [32] measured diurnal variations in
yrosine hydroxylase (TH), the rate-limiting enzyme in DA synthesis.
ampp et al. [33] showed that monoamine oxidase (MAO), which
atabolizes DA, is controlled by clock proteins. Finally, extracellular
A has been shown to vary diurnally in the rat brain [34]. In 2021,
. Kim (an author of this paper) and M. Reed [35] created a math-
matical model of the circadian clock and its downstream influences
n dopaminergic variables, based on experiments in [30,31,33]. This
athematical model was then connected to the extant model of DA

ynthesis and release by Best et al. [36]. The model predictions of
xtracellular DA were consistent with data in [34], giving strong ev-
dence that the mechanisms proposed by experimentalists [30,31,33]
re sufficient to explain diurnal variation in extracellular DA.

In this paper, we use a reduced version of the previous model [35]
o capture the essential clock dynamics and perform a thorough math-
matical analysis; see Fig. 1 for a schematic. As in the original model,
he mathematical model in this paper consists of three interlocking
ystems: (1) the core circadian clock which consists of BMAL1-CLOCK
𝐵𝐶) and the successively phosphorylated Period proteins ({𝑃𝑖}4𝑖=1); (2)

the secondary feedback loop involving REV-ERBs (𝑅𝐸𝑉 ), RORs (𝑅𝑂𝑅),
𝐵𝐶, and Bmal1 (𝑆); and (3) the downstream influences on tyrosine
hydroxylase (𝑇𝐻) and monoamine oxidase (𝑀𝐴𝑂) in the dopamin-
ergic system. The reduced model displays characteristic features of
the circadian clock and describes the influences of the circadian clock
on dopaminergic variables. Details of the differential equations and
parameters are included in the Methods section.

Throughout this paper, we highlight the different clock phenotypes
generated by the mathematical model, how they are influenced by
light and parameter variation, and their connections to experimental
observations. In Section 3, we characterize regular diurnal rhythms in
our circadian clock model and identify bifurcations in a biologically
motivated range of parameters. In Section 4, we explore how protein
sequestration in the model gives rise to piecewise-smooth dynamics,
and we find conditions that lead to decoupling of 𝐵𝐶 and 𝑆. While
circadian rhythms persist in all other clock variables, we show that
this decoupling behavior could have harmful health outcomes by dis-
rupting DA rhythmicity. In Section 5, we demonstrate that low light
amplitudes result in a narrow parameter range for healthy rhythms,
with quasiperiodic behaviors below and above that range. As light
amplitude is increased, the range for healthy rhythms expands. Finally,
in Section 6 we show that sufficiently strong light variation leads to
period homeostasis and eliminates quasiperiodicity in the parameter
regime of interest.

2. Methods

The mathematical model studied in this paper consists of differential
equations describing the core circadian clock, a secondary feedback
loop, and downstream dopaminergic variables. In Section 2.1, we de-
scribe the reduced model equations for the circadian clock and sec-
ondary feedback loop. In Section 2.2, we present the model equations
for TH and MAO, which are influenced by the circadian clock, and
in Section 2.3 we describe how we connect our results to an extant
model [36] to simulate daily variation in extracellular DA.
 c
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2.1. Model development

A schematic diagram of the reduced mathematical model is pro-
vided in Fig. 1. The core circadian clock consists of variables {𝑃𝑖}4𝑖=1
and 𝐵𝐶. As in the original model, the production term for 𝑃1 depends
on the amount of free 𝐵𝐶 after sequestration by 𝑃4, which is 𝑓0(𝐵𝐶, 𝑃4)
in this paper. In the original model, the core circadian clock included
the repression of 𝐵𝐶-mediated transcription by the clock protein CRY.
In this model, we have omitted this second form of repression.

Circadian rhythms are primarily driven by a negative feedback loop,
involving inhibition of 𝐵𝐶 by 𝑃4 through protein sequestration. A
function for protein sequestration was derived in [37] and used in the
circadian models by Kim and Forger [38–40] to describe the sequestra-
tion of a protein 𝑃 by an inhibitor 𝐼 , with dissociation constant 𝐷 ≪ 1.
The function is

𝑓 (𝑃 , 𝐼,𝐷) = 1
2

(

𝑃 − 𝐼 −𝐷 +
√

(𝑃 − 𝐼 −𝐷)2 + 4𝐷𝑃
)

, (1)

here 𝑓 (𝑃 , 𝐼,𝐷) is the concentration of free 𝑃 not bound to 𝐼 . Note that
n our original model [35] and in [38–40], the protein sequestration
unction is expressed as a ratio of free 𝑃 to total 𝑃 . In Eq. (1), 𝑓 (𝑃 , 𝐼,𝐷)
s the concentration of free 𝑃 . We simplify Eq. (1) by taking 𝐷 → 0, so
he protein sequestration term in this model is

0(𝑃 , 𝐼) =
𝑃 − 𝐼 + |𝑃 − 𝐼|

2
=

{

𝑃 − 𝐼 𝑃 > 𝐼
0 𝑃 ≤ 𝐼.

(2)

Light increases the expression of Per genes in the SCN [1,41,42].
As in the original model, we have modeled light input by adjusting
the production rate of 𝑃1 to vary diurnally. In many experiments,
light–dark conditions are created by switching lights on/off instead
of gradually adjusting light intensity. We chose to use a step function
𝐿(𝑡, 𝑥) to model the impact of light at time 𝑡, with 𝑥 as percent change
of the production rate of 𝑃1 (Eq. (3)). As a result, the mathematical
model with light input is in one of two states (light vs dark) depending
on the Zeitgeber Time (ZT). ZT is a unit of time that corresponds to
the 12:12 light–dark cycle, with ZT0 indicating beginning of light and
ZT12 indicating beginning of dark. The light function is

𝐿(𝑡, 𝑥) =

{

1 + 𝑥 𝑡 mod 24 < 12
1 − 𝑥 otherwise.

(3)

In the free running model without light input, we let 𝑥 = 0 so that 𝐿 = 1.
All other production and degradation terms are linear. 𝐵𝐶 production
is dependent on 𝑆, which can be thought of as Bmal1. The reduced
model equations for the core circadian clock are

𝑑𝑃1
𝑑𝑡

= 𝑟1𝐿(𝑡, 𝑥)𝑓0(𝐵𝐶, 𝑃4) − 𝑟2𝑃1, (4a)
𝑑𝑃2
𝑑𝑡

= 𝑟2𝑃1 − 𝑟3𝑃2, (4b)
𝑑𝑃3
𝑑𝑡

= 𝑟3𝑃2 − 𝑟4𝑃3, (4c)
𝑑𝑃4
𝑑𝑡

= 𝑟4𝑃3 − 𝑑4𝑃4, (4d)
𝑑𝐵𝐶
𝑑𝑡

= 𝛽𝑏𝑐𝑆 − 𝑑𝑏𝑐𝐵𝐶. (4e)

he core circadian clock is linked to a secondary feedback loop via
𝐶, which activates the transcription of 𝑅𝐸𝑉 and 𝑅𝑂𝑅, which then
odulate 𝑆. The secondary feedback loop consists of variables 𝑆, 𝑅𝐸𝑉 ,

nd 𝑅𝑂𝑅. 𝑅𝐸𝑉 and 𝑅𝑂𝑅 are known to compete for binding to the
mal1 (𝑆) promoter, with 𝑅𝐸𝑉 acting as a repressor and 𝑅𝑂𝑅 as an
ctivator [5,43]. Ikeda et al. [30] found that 𝑅𝐸𝑉 and 𝑅𝑂𝑅 peak at the
ame time, with a net effect of inhibition near the peaks and activation
way from the peaks. We chose to model the competing effects of
𝐸𝑉 and 𝑅𝑂𝑅 on 𝑆 with a simple term 𝛼𝑓0(𝑆,𝑅𝐸𝑉 )𝑅𝑂𝑅. The term
0(𝑆,𝑅𝐸𝑉 ) is the amount of free 𝑆 after 𝑅𝐸𝑉 binding.

Light input enters the model as a factor multiplying the 𝑟1 rate

onstant in Eq. (4a). As a periodic time-dependent coefficient in the
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Fig. 1. Schematic diagram of the circadian clock model. The protein complex BMAL1-CLOCK (𝐵𝐶) promotes the production of PER, which goes through multiple phosphorylation
steps ({𝑃𝑖}4𝑖=1). Phosphorylated PER inhibits its own production by inhibiting 𝐵𝐶. A secondary loop consists of 𝑅𝐸𝑉 and 𝑅𝑂𝑅, which are activated by 𝐵𝐶 and reciprocally modulate

mal1 (𝑆), a precursor to 𝐵𝐶. Arrows facing outwards denote degradation. The downstream dopaminergic variables 𝑇𝐻 and 𝑀𝐴𝑂 are modulated by 𝑅𝐸𝑉 , 𝑅𝑂𝑅, and 𝐵𝐶. 𝑇𝐻
is the rate-limiting enzyme in DA synthesis and 𝑀𝐴𝑂 is involved in DA degradation.
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system, mathematically this is called parametric forcing [44,45]. For
𝑥 ≥ 0, periodic solutions become non-generic as the 24-h forcing cycle
can interact with the natural period of the unforced system (to be called
the ‘‘free running model’’) to generate oscillatory but non-periodic
behaviors (quasiperiodic solutions). Later we will show that for strong
light input (sufficiently large 𝑥), solutions of the system can become
periodic on a 24-h cycle, sometimes called entrainment or frequency
locking.

As in Eq. (4a) for 𝑃1, the production terms of 𝑅𝐸𝑉 and 𝑅𝑂𝑅 are
dependent on 𝑓0(𝐵𝐶, 𝑃4), the amount of free 𝐵𝐶. The reduced model
equations for the secondary loop are

𝑑𝑆
𝑑𝑡

= 𝛽 + 𝛼𝑓0(𝑆,𝑅𝐸𝑉 )𝑅𝑂𝑅 − 𝑑𝑠𝑆, (4f)
𝑑𝑅𝐸𝑉

𝑑𝑡
= 𝑟𝑟𝑒𝑣𝑓0(𝐵𝐶, 𝑃4) − 𝑑𝑟𝑒𝑣𝑅𝐸𝑉 , (4g)

𝑑𝑅𝑂𝑅
𝑑𝑡

= 𝑟𝑟𝑜𝑟𝑓0(𝐵𝐶, 𝑃4) − 𝑑𝑟𝑜𝑟𝑅𝑂𝑅. (4h)

.2. Downstream dopaminergic variables

Tyrosine hydroxylase (𝑇𝐻) and monoamine oxidase (𝑀𝐴𝑂) are the
downstream dopaminergic variables in the mathematical model; see
Fig. 1. We use the mathematical model to predict the daily time series
of 𝑇𝐻 and 𝑀𝐴𝑂, which we then connect to the extant model of DA
by Best et al. [36] to predict the circadian rhythms of extracellular DA
(𝑒𝐷𝐴).

𝑇𝐻 is the rate-limiting enzyme in DA synthesis. 𝑇𝐻 varies diurnally
in experiments and is coordinately modulated by 𝑅𝐸𝑉 and 𝑅𝑂𝑅, with
𝑅𝐸𝑉 inhibiting and 𝑅𝑂𝑅 activating 𝑇𝐻 [2,31,32]. The differential
equation for the circadian clock’s influence on 𝑇𝐻 is exactly the same
as in the original model [35], and is
𝑑𝑇𝐻
𝑑𝑡

= 𝑏𝑡ℎ +(𝑇𝐻,𝑅𝐸𝑉 ) +(𝑇𝐻,𝑅𝐸𝑉 ,𝑅𝑂𝑅) − 𝑑𝑡ℎ𝑇𝐻 (5)

here

(𝑇𝐻,𝑅𝐸𝑉 ) =
𝜌𝑡ℎ

(

1 + 𝑘𝑡ℎ
(

1 − 𝑓 (𝑇𝐻,𝑅𝐸𝑉 ,𝜖𝑡ℎ)
𝑇𝐻

))𝑛𝑡ℎ
, (6)

(𝑇𝐻,𝑅𝐸𝑉 ,𝑅𝑂𝑅) = 𝛼𝑡ℎ
𝑓 (𝑇𝐻,𝑅𝐸𝑉 , 𝜖𝑡ℎ)

𝑇𝐻
𝑅𝑂𝑅

𝑅𝑂𝑅 + 𝜅𝑡ℎ
. (7)

𝑀𝐴𝑂 is an enzyme essential for DA degradation, and is thought
o be activated by 𝐵𝐶 [2,33]. As in the original model [35], the
roduction rate of 𝑀𝐴𝑂 is dependent on the amount of free 𝐵𝐶. In
he reduced model in this paper, free 𝐵𝐶 is 𝑓0(𝐵𝐶, 𝑃4) where 𝑓0 is the
unction in Eq. (2). The differential equation for 𝑀𝐴𝑂 is
𝑑𝑀𝐴𝑂 = 𝑟 𝑓 (𝐵𝐶, 𝑃 ) − 𝑑 𝑀𝐴𝑂. (8)
𝑑𝑡 𝑚 0 4 𝑚

3

.3. Extant DA model

We connect our 𝑇𝐻 and 𝑀𝐴𝑂 results to an existing mathematical
odel of DA synthesis and release by Best et al. [36]. The schematic
iagram of the DA model is provided in Fig. 2 and shows the reactions
escribed by the model equations. 𝑇𝐻 converts tyrosine (tyr) into L-
,4- dihydroxyphenylalanine (l-dopa), which is then decarboxylated to
ytosolic dopamine (cda). Cytosolic dopamine is packaged into vesicles
nd released into the extracellular space as extracellular dopamine
eda). In this paper, the variable name for extracellular dopamine is
𝐷𝐴. 𝑀𝐴𝑂 catabolizes cytosolic and extracellular DA. We save the
ime series produced in our model for 𝑇𝐻 and 𝑀𝐴𝑂 (relative to their

peak values) and multiply these variations to the velocities of the 𝑇𝐻
and 𝑀𝐴𝑂 reactions respectively in the equations from [36] to generate
circadian rhythms in DA. Full details of the DA model including the 9
differential equations are in [36].

In Fig. 3, the 𝑒𝐷𝐴 model curve (yellow) under a 12:12 light–
dark cycle is 24-h periodic, with 𝑒𝐷𝐴 peaks shortly following 𝑇𝐻
(solid gray curve) peaks, and 𝑒𝐷𝐴 decreasing when 𝑀𝐴𝑂 (dashed
ray curve) is elevated. This relationship between 𝑒𝐷𝐴, 𝑇𝐻 , and 𝑀𝐴𝑂
s consistent with the role of 𝑇𝐻 in DA synthesis and the role of
𝐴𝑂 in DA catabolism. The original model [35] was used to predict

𝐷𝐴 variation in the rat striatum, which corresponded well with data
rom [34]. We remark that the interest of this paper is to use a
imple model to understand the potential DA dynamics resulting from
ircadian clock disruptions, and not to predict exact time courses in
ny specific mammal or region of the brain. In Sections 4 and 5 , we
haracterize different types of clock behavior and their downstream
ffects on extracellular DA rhythmicity.

.4. Parameter selection and computational methods

All computations were done with the parameter values listed in Ta-
le 1 unless otherwise specified. The parameters for this reduced model
ere selected with three major goals for model variables. The first two
oals were to obtain reasonable amplitudes of circadian variation and
ccurate phase relationships between model variables suggested by free
unning experiments and previous models [35,38,46]. The third goal
as to achieve a period close to 23.5 h as in mouse experiments without

ight input [3]. As no changes were made to the differential equation
or 𝑇𝐻 , parameter values appearing in Eq. (5) were kept the same as in
he original model [35]. We point to the Methods in [35] for a detailed
iscussion of parameter selection.

All computations in the Results section were performed in MAT-
AB. In Section 3, we demonstrate the circadian rhythms generated
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Table 1
Parameter values used in the mathematical model.

Par. Val. Description Sources

𝑥 0.3 Amplitude of the light function [35,38]
𝑟1 0.5 Production constant of 𝑃1 proportional to net effect of light and activation by free 𝐵𝐶 [3,35,38,46]
𝑟2 0.2 𝑃1 phosphorylation rate [3,35,38,46]
𝑟3 0.2 𝑃2 phosphorylation rate [3,35,38,46]
𝑟4 0.2 𝑃3 phosphorylation rate [3,35,38,46]
𝑑4 0.2 Degradation rate of 𝑃4 [3,35,38,46]
𝛽𝑏𝑐 0.5 Production rate of 𝐵𝐶 from 𝑆 [3,35,38,46]
𝑑𝑏𝑐 0.3 Degradation rate of 𝐵𝐶 [3,35,38,46]
𝛽 0.5 Basal production rate of 𝑆 [30,35,38]
𝛼 0.5 Production rate of 𝑆 proportional to net effect of inhibition by 𝑅𝐸𝑉 and activation by 𝑅𝑂𝑅 [30,35,38]
𝑑𝑠 0.5 Degradation rate of 𝑆 [30,35,38]
𝑟𝑟𝑒𝑣 0.3 Production rate of 𝑅𝐸𝑉 proportional to free 𝐵𝐶 [30,35]
𝑑𝑟𝑒𝑣 0.2 Degradation rate of 𝑅𝐸𝑉 [30,35]
𝑟𝑟𝑜𝑟 0.3 Production rate of 𝑅𝑂𝑅 proportional to free 𝐵𝐶 [30,35]
𝑑𝑟𝑜𝑟 0.2 Degradation rate of 𝑅𝑂𝑅 [30,35]
𝑏𝑡ℎ 0 Basal production rate of 𝑇𝐻 [31,35]
𝑑𝑡ℎ 5.6 Degradation rate of 𝑇𝐻 [31,35]
𝜌𝑡ℎ 1 Strength of 𝑇𝐻 repression as a function of percent 𝑇𝐻 bound to 𝑅𝐸𝑉 [31,35]
𝑘𝑡ℎ 1 Coefficient in 𝑇𝐻 repression term as a function of percent 𝑇𝐻 bound to 𝑅𝐸𝑉 [31,35]
𝜖𝑡ℎ 0.3 Dissociation constant between 𝑇𝐻 and 𝑅𝐸𝑉 [31,35]
𝑛𝑡ℎ 1 Exponent in 𝑇𝐻 repression term as a function of percent 𝑇𝐻 bound to 𝑅𝐸𝑉 [31,35]
𝛼𝑡ℎ 3.7 Strength of activation of free 𝑇𝐻 (not bound to 𝑅𝐸𝑉 ) by 𝑅𝑂𝑅 [31,35]
𝜅𝑡ℎ 1 Constant in 𝑇𝐻 activation term [31,35]
𝑟𝑚 3 Production rate of 𝑀𝐴𝑂 proportional to free 𝐵𝐶 [33,35]
𝑑𝑚 0.02 Degradation rate of 𝑀𝐴𝑂 [33,35]
S
c
W
c
𝑓
1

t

Fig. 2. (B) Schematic diagram of the extant DA model. The model in this paper
generates circadian rhythms of 𝑇𝐻 and 𝑀𝐴𝑂. We connect our model to the extant

odel of dopamine synthesis and release by Best et al. [36] to predict circadian varia-
ion in extracellular DA. Rectangular boxes indicate substrates and blue ellipses indicate
nzymes or transporters. Full details of the DA model are in [36]. Abbreviations: btyr,
lood tyrosine; bh2, dihydrobiopterin; bh4, tetrahydrobiopterin; tyr, tyrosine; l-dopa,
,4-dihyroxyphenylalanine; cda, cytosolic dopamine; vda, vesicular dopamine; eda,
xtracellular dopamine; hva, homovanillic acid; trypool, the tyrosine pool; vTyr, neutral
mino acid transporter; DRR, dihydrobiopterin reductase; TH, tyrosine hydroxylase;
ADC, aromatic amino acid decarboxylase; MAT, vesicular monoamine transporter;
AT, dopamine transporter; auto, D2 dopamine auto receptors; MAO monoamine
xidase; COMT, catecholamine O-methyl transferase.

y the mathematical model in both free running and 12:12 light–
ark conditions. Numerical solutions were computed using MATLAB’s
 a

4

Fig. 3. Circadian rhythms of downstream dopamine. The reduced mathematical
model predicts diurnal variation in 𝑇𝐻 (solid gray curve) as a result of modulation
by 𝑅𝐸𝑉 and 𝑅𝑂𝑅, and in 𝑀𝐴𝑂 (dashed gray curve) as a result of activation by
𝐵𝐶. Consistent with the original model [35], 𝑇𝐻 and 𝑀𝐴𝑂 are nearly antiphasic.
The 24-h periodic oscillations of 𝑇𝐻 and 𝑀𝐴𝑂 are used to model circadian rhythms
in extracellular DA (𝑒𝐷𝐴, yellow curve). As we would expect, extracellular DA peaks
shortly after 𝑇𝐻 peaks, and drops when 𝑀𝐴𝑂 rises.

ode45 and ode23s routines. When solutions converged to a limit cycle,
we computed period as the time separation between 𝑃2 peaks. In
ection 3.2, we identify and discuss Hopf bifurcation points in the
ore circadian clock under free running and constant light conditions.
e used Matcont, a numerical continuation package in MATLAB, to

ompute bifurcation diagrams after smoothing the piecewise function
0(𝑃 , 𝐼) as 𝑓 (𝑃 , 𝐼,𝐷) from Eq. (1) with dissociation constant 𝐷 = 1 ×
0−16 [38] in the equations for 𝑃1, 𝑆, 𝑅𝐸𝑉 , and 𝑅𝑂𝑅.

We chose to focus on the parameters 𝑟1 and 𝑑𝑏𝑐 , where 𝑟1 determines
he rate of production of 𝑃1 and 𝑑𝑏𝑐 is the degradation rate of the
ctivator 𝐵𝐶. Each parameter was varied by at least 25%, since it
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is known that enzyme expression levels vary by about 25% between
individuals of the same species [47–49]. In the model, we treat this
range as ‘‘normal’’. In Section 4, we study the different dynamics that
arise out of the protein sequestration term in Eq. (2), depending on
the amount of inhibitor relative to the amount of protein it sequesters.
Experiments in [50] demonstrate that protein sequestration can gener-
ate ultrasensitive behavior depending on the abundance of an inhibitor.
In Section 5, we present some quasiperiodic and chaotic behaviors re-
sulting from parameter and light perturbations. Numerical solutions for
varying 𝑟1 are obtained using MATLAB’s ode45, and are used to create
oincaré sections. Lyapunov exponents to identify quasiperiodicity or
haos were computed numerically using the algorithm developed by
olf et al. [51]. Finally, in Section 6, we discuss period homeostasis.

eriod is again computed using the time separation between peaks,
nd secondary period is computed by first performing interpolation
f 𝑃2 time series peaks, then finding the time separation between the
nterpolated curve’s peaks.

. Circadian oscillations and Hopf bifurcations

.1. Clock rhythms

The circadian clock variables in this mathematical model are {𝑃𝑖}4𝑖=1
here 𝑖 is the number of phosphorylations, 𝐵𝐶, 𝑆, 𝑅𝐸𝑉 , and 𝑅𝑂𝑅; see
ig. 1. The protein complex BMAL1-CLOCK, 𝐵𝐶, promotes the tran-
cription of Per genes. PER proteins, 𝑃1, are transported to the cytosol
here they undergo multiple phosphorylation steps. Then, phosphory-

ated PER, 𝑃4, binds with the protein CRY to re-enter the nucleus and
nhibit activation by 𝐵𝐶. In the secondary loop, 𝐵𝐶 activates 𝑅𝐸𝑉 and
𝑂𝑅. These proteins reciprocally modulate 𝑆 or Bmal1, a precursor

o 𝐵𝐶, with 𝑅𝐸𝑉 inhibiting 𝑆 and 𝑅𝑂𝑅 activating 𝑆. The results of
hese interlocked feedback loops can be seen in Fig. 4, and the proteins’
elative phase relationships and amplitudes are consistent with our
riginal model.

The free running model is oscillatory with period 23.5 h, as in
ouse experiments without light input [3]; see Fig. 4B. In the light-

ntrained model with 𝑥 = 0.3, period length is 24 h; see Fig. 4D. 𝑆
eaks during the beginning of subjective night, and PER, 𝑃2, peaks in
he middle of the night when mice are active, as in [52]. In the model,
ncreasing the light variation 𝑥 increases the circadian amplitude which
s consistent with experiments in [53].

Healthy, robust circadian rhythms rely on balanced stoichiometry
etween circadian activators and repressors [38,54]. 𝑆 is activated by
𝑂𝑅 and inhibited by 𝑅𝐸𝑉 , and its rate equation has a simple form
hich models these reciprocal influences well. However, 𝑅𝑂𝑅 and
𝐸𝑉 , the basal production rate 𝛽, and the degradation term 𝑑𝑠𝑆 need

o be balanced in Eq. (4f) to stabilize 𝑆. The mathematical model is
uite robust as we will see in Section 6, but one must use reasonable
nitial conditions. In the Appendix, we analyze the conditions under
hich 𝑆 can destabilize.

.2. Hopf bifurcations

Previously, the original model [35] successfully predicted circadian
hythms in dopaminergic variables [30,31,33,34]. We use the reduced
odel in this paper to show how variations in particular parameters

ffect the circadian clock’s dynamics. The parameter 𝑟1 can be thought
f as the transcription rate of 𝑃𝐸𝑅. Variation in 𝑟1 in the free running
odel leads to a supercritical Hopf bifurcation at 𝑟1 = 0.3; see Fig. 5A.

teady state values for 𝑟1 < 0.3 are computed in Section 4.1. In
ig. 5, the green shaded regions span 25% below and 25% above the
riginal parameter value and indicate the parameter range of interest
s described in the Methods. Solid orange curves indicate the bounds
f stable limit cycles, which span across the entire parameter range
f interest. A subcritical Hopf bifurcation occurs at 𝑟1 = 0.8, where a

ranch of equilibria becomes stable and an unstable limit cycle appears.

5

Fig. 4. Model clock oscillations in free running conditions and 12:12 light–dark
conditions. Protein concentrations are plotted relative to their maximum. In free
running conditions, the period is 23.5 h and relative 𝑃2 has an amplitude of 0.41
(panels A–B). In 12–12 light–dark conditions, the period is 24 h and the amplitude of
𝑃2 is 0.55 (panels C–D).

Fig. 5. One-parameter bifurcation diagrams of the free running model with 𝑥 = 0
panels A–B) and model under constant light (panels C–D). Constant light means
ights on for all 𝑡, or 𝐿 = 1.3 in Eq. (4a). Green shaded regions indicate parameter
egions of interest, 25% below and 25% above original parameter values (𝑟1 = 0.5
nd 𝑑𝑏𝑐 = 0.3). Blue curves indicate equilibrium points and orange curves indicate the
ounds of limit cycles. Stable branches of solutions are solid and unstable branches are
ashed. In the free running model there is a Hopf bifurcation at 𝑟1 = 0.3 (panel A),
nd in the model with constant light there is a Hopf bifurcation at 𝑟1 = 0.23 (panel C).

t 𝑟1 = 0.913, the unstable limit cycle vanishes and the branch of
equilibria becomes unstable. Not only are the limit cycles here unstable,
but they also have periods ranging from 31.4 h to 45.2 h. With variation
in 𝑑𝑏𝑐 , a parameter proportional to the degradation rate of 𝐵𝐶, there
are Hopf bifurcations above and below the green shaded region, and
no other branches of stable equilibria; see Fig. 5B. In this range of
parameters, we identified a separate branch of unstable equilibria but
omitted the graph because we believe it is not biologically relevant.

With the light function from Eq. (3), the mathematical model is in
one of two states depending on the ZT: (during light) the production
rate of 𝑃1 is 1 + 𝑥 times that of its free running production rate, or
(during dark) the production rate of 𝑃1 is 1 − 𝑥 times that of its free
running production rate. Treating this model in a piecewise manner
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allows us to study bifurcations through Matcont, which is designed
for autonomous systems. In Fig. 5C–D, we examine the same one-
parameter variations as in the free running model, but now under
constant light. Constant light increases the production rate of 𝑃1, and
in Fig. 5C this effectively shifts the Hopf bifurcation point 𝑟1 = 0.3
from the free running model to 𝑟1 = 0.23; see panel C versus panel
A. In [12], Per mutant mice maintained rhythmicity in constant light
despite losing rhythmicity in constant darkness, and our model offers
a new explanation of why. With the Hopf bifurcation along 𝑟1 shifted
down in the constant light model, the branch of stable limit cycles
extends to lower production rates of PER.

We additionally observe that constant light conditions shift the
branch of stable equilibria that starts at 𝑟1 = 0.8 from Fig. 5A to
start at 𝑟1 = 0.615 in Fig. 5C. This stable branch is close to the
green shaded region, or the parameter range of interest. In Fig. 5D,
even more complex behavior arises from variation in 𝑑𝑏𝑐 . A branch of
stable equilibria appears within the green shaded region, suggesting
that model variables will not always converge to the stable limit cycle
whose bounds are indicated by the solid orange curves.

4. Piecewise-smooth dynamics

In this section, we note the piecewise-smooth dynamics in the math-
ematical model. A detailed discussion of piecewise-smooth dynamical
systems can be found in [55]. The function 𝑓0(𝑃 , 𝐼) for a protein 𝑃 and
an inhibitor 𝐼 is piecewise-defined in Eq. (2). It appears in the form
𝑓0(𝐵𝐶, 𝑃4) in the production rates for 𝑃1, 𝑅𝐸𝑉 and 𝑅𝑂𝑅, and in the
form 𝑓0(𝑆,𝑅𝐸𝑉 ) in the production rate for 𝑆. As a result, the dynamical
system is in one of four different cases at any given time:

Case 1: 𝐵𝐶 ≤ 𝑃4, 𝑆 ≤ 𝑅𝐸𝑉
Case 2: 𝐵𝐶 ≤ 𝑃4, 𝑆 > 𝑅𝐸𝑉
Case 3: 𝐵𝐶 > 𝑃4, 𝑆 ≤ 𝑅𝐸𝑉
Case 4: 𝐵𝐶 > 𝑃4, 𝑆 > 𝑅𝐸𝑉
In Cases 1 & 2, we have 𝐵𝐶 ≤ 𝑃4 so that 𝑓0(𝐵𝐶, 𝑃4) = 0. As a result,

the production rate of 𝑃1 in Eq. (4a) is zero and the light forcing has
no effect in these two cases. In Cases 1 & 3, the differential equations
are linear; and in Cases 1–3, different subgroups of the model variables
are decoupled. We will examine decoupling for Case 3 in Section 4.1.

We computed numerical solutions of the differential equations for
𝑟1 between 0.1 and 1 in the free running model and observed that for
1 > 0.3, the stable limit cycle passes through two or more cases. For
1 < 0.3, the stable limit cycle is contained entirely in Case 3 with
𝐶 > 𝑃4, 𝑆 ≤ 𝑅𝐸𝑉 , so we use this unique feature to study 𝑟1 < 0.3

or when the production rate of 𝑃1 is low.

.1. Understanding Case 3

As discussed previously, there is a Hopf bifurcation in the free
unning model at 𝑟1 = 0.3; see Fig. 5A. When 𝑟1 < 0.3, numerical

solutions converge to a stable equilibrium point with 𝐵𝐶 > 𝑃4 and
≤ 𝑅𝐸𝑉 . Here, we rewrite the core circadian clock and secondary

eedback loop equations to correspond to Case 3:
𝑑𝑃1
𝑑𝑡

= 𝑟1𝐿(𝑡, 𝑥)(𝐵𝐶 − 𝑃4) − 𝑟2𝑃1 (9a)
𝑑𝑃2
𝑑𝑡

= 𝑟2𝑃1 − 𝑟3𝑃2 (9b)
𝑑𝑃3
𝑑𝑡

= 𝑟3𝑃2 − 𝑟4𝑃3 (9c)
𝑑𝑃4
𝑑𝑡

= 𝑟4𝑃3 − 𝑑4𝑃4 (9d)
𝑑𝑅𝐸𝑉

𝑑𝑡
= 𝑟𝑟𝑒𝑣(𝐵𝐶 − 𝑃4) − 𝑑𝑟𝑒𝑣𝑅𝐸𝑉 (9e)

𝑑𝑅𝑂𝑅
𝑑𝑡

= 𝑟𝑟𝑜𝑟(𝐵𝐶 − 𝑃4) − 𝑑𝑟𝑜𝑟𝑅𝑂𝑅 (9f)
𝑑𝐵𝐶 = 𝛽 𝑆 − 𝑑 𝐵𝐶 (9g)

𝑑𝑡 𝑏𝑐 𝑏𝑐

6

𝑑𝑆
𝑑𝑡

= 𝛽 − 𝑑𝑠𝑆 (9h)

where the differential equations are linear. The steady state for the free
running model with 𝑥 = 0 is

𝑌 ∗ =
⟨

𝑃 ∗
1 , 𝑃

∗
2 , 𝑃

∗
3 , 𝑃

∗
4 , 𝑅𝐸𝑉 ∗, 𝑅𝑂𝑅∗, 𝐵𝐶∗, 𝑆∗⟩𝑇 , (10)

here

∗
1 =

𝑑4
𝑟2

𝑃 ∗
4 , 𝑃 ∗

2 =
𝑑4
𝑟3

𝑃 ∗
4 , 𝑃 ∗

3 =
𝑑4
𝑟4

𝑃 ∗
4 , 𝑃 ∗

4 =
𝑟1

𝑑4 + 𝑟1
𝐵𝐶∗, (11a)

𝐸𝑉 ∗ =
𝑑4 𝑟𝑟𝑒𝑣
𝑟1 𝑑𝑟𝑒𝑣

𝑃 ∗
4 , 𝑅𝑂𝑅∗ =

𝑑4 𝑟𝑟𝑜𝑟
𝑟1 𝑑𝑟𝑜𝑟

𝑃 ∗
4 , (11b)

𝐵𝐶∗ =
𝛽𝑏𝑐
𝑑𝑏𝑐

𝑆∗, 𝑆∗ =
𝛽
𝑑𝑠

, (11c)

and 𝐵𝐶∗ > 𝑃 ∗
4 and 𝑆∗ ≤ 𝑅𝐸𝑉 ∗ when 𝑟1 < 0.3. At 𝑟1 = 0.3, 𝑌 ∗ lies

on a discontinuity boundary 𝑆∗ = 𝑅𝐸𝑉 ∗, between Cases 3 and 4, and
a boundary equilibrium bifurcation [55] takes place. In Fig. 5A, we
saw this bifurcation take the form of a Hopf bifurcation. To corroborate
the numerical results in Fig. 5A, one can use linear stability analysis to
check that 𝑌 ∗ is stable for 𝑟1 < 0.3.

Once we introduce periodic forcing by light, a boundary equilibrium
bifurcation along 𝑟1 still exists. We observed numerically that solutions
again switch from Case 3 to Case 4 at some 𝑟1. We let 𝑟1 = 𝑟∗1(𝑥)
denote this boundary equilibrium bifurcation point, so that 𝑟1 < 𝑟∗1(𝑥)
corresponds to Case 3 with 𝐵𝐶 > 𝑃4 and 𝑆 ≤ 𝑅𝐸𝑉 . What is special
about Case 3 is that Eqs. (9g) and (9h) for 𝐵𝐶 and 𝑆 are decoupled from
the rest of the model variables. We found that, while non-oscillatory
in the free running model, the Case 3 equations generate oscillatory
behavior in all variables besides 𝐵𝐶 and 𝑆. Eq. (11c) gives the steady
state values for the decoupled system, and the eigenvalues of the
Jacobian matrix are 𝜆1,2 = −𝑑𝑏𝑐 ,−𝑑𝑠 < 0. As a result, the steady states
𝐵𝐶∗ and 𝑆∗ are stable; and in Fig. 6A, example time series for 𝐵𝐶 and
𝑆 in Case 3 (𝑥 = 0.3 and 𝑟1 = 0.25) converge to the stable steady state
values.

What about the other variables {𝑃𝑖}4𝑖=1, 𝑅𝐸𝑉 , and 𝑅𝑂𝑅? As shown
in Fig. 6A, there is still light-driven circadian variation in the rest of
the model variables. To confirm our numerical results, we have used
some tools from Floquet theory to study Eqs. (9a)–(9f).

Let 𝐵𝐶 = 𝐵𝐶∗ and 𝑆 = 𝑆∗ and note that the system in Eqs. (9a)–
(9f),

𝑈 = ⟨𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑅𝐸𝑉 ,𝑅𝑂𝑅⟩𝑇 , (12)

is of the form
𝑑𝑈
𝑑𝑡

= 𝐽𝑈 + 𝑏 (13)

here 𝐽 is a piecewise constant matrix and

= ⟨𝑟1𝐿(𝑡, 𝑥)𝐵𝐶, 0, 0, 0, 𝑟𝑟𝑒𝑣𝐵𝐶, 𝑟𝑟𝑜𝑟𝐵𝐶⟩

𝑇 . (14)

he solution of this inhomogeneous system can be constructed via
ariation of parameters or an integrating factor approach in terms of
he solution of the corresponding homogeneous problem,
𝑑𝑉
𝑑𝑡

= 𝐽𝑉 . (15)

Floquet theory can be applied to Eq. (15) to analyze the stability of the
numerically observed periodic solutions of Eq. (13).

Let 𝐽 (𝑡) be the piecewise Jacobian matrix of Eq. (15), with 𝐽 (𝑡) = 𝐽+
f 𝑡 mod 24 ∈ [0, 12) and 𝐽 (𝑡) = 𝐽− if 𝑡 mod 24 ∈ [12, 24) where

𝐽± =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

−𝑟2 0 0 −𝑟1(1 ± 𝑥) 0 0

𝑟2 −𝑟3 0 0 0 0

0 𝑟3 −𝑟4 0 0 0

0 0 𝑟4 −𝑑4 0 0

0 0 0 −𝑟𝑟𝑒𝑣 −𝑑𝑟𝑒𝑣 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

. (16)
⎣ 0 0 0 −𝑟𝑟𝑜𝑟 0 −𝑑𝑟𝑜𝑟⎦
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Fig. 6. Effects of decoupling in Case 3. In the mathematical model with 𝐵𝐶 > 𝑃4 and 𝑆 ≤ 𝑅𝐸𝑉 , the time series of 𝐵𝐶 (panel A, yellow curve) and 𝑆 (panel A, dashed purple
curve) are constant, while other clock variables are oscillatory. 𝐵𝐶 activates 𝑅𝐸𝑉 (panel A, orange curve) and 𝑅𝑂𝑅 (not graphed); as a result, 𝑅𝐸𝑉 and 𝑅𝑂𝑅 vary by less than
10% of their peak value. Downstream of the circadian clock, 𝑇𝐻 (panel B, blue curve) and 𝑀𝐴𝑂 (panel B, orange curve) vary minimally.
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Fig. 7. Dominant Floquet multipliers for 𝑟1 < 𝑟∗1(𝑥). The two Floquet multipliers
largest in magnitude for the model case with 𝐵𝐶 > 𝑃4 and 𝑆 ≤ 𝑅𝐸𝑉 (or 0 < 𝑟1 < 0.3)

ere computed iteratively through 𝑟1. Three different light amplitudes were considered:
= 0.1 (blue curves), 𝑥 = 0.2 (orange curves), and 𝑥 = 0.3 (yellow curves).

sing Floquet theory [56], the monodromy matrix is 𝑀 = 𝑒12𝐽−𝑒12𝐽+ .
e are interested in 𝑟1 < 0.3 so that 𝐵𝐶 > 𝑃4 and 𝑆 ≤ 𝑅𝐸𝑉 .
sing MATLAB, we have computed the two eigenvalues of 𝑀 that are

argest by magnitude, 𝜌1 and 𝜌2; see Fig. 7. The eigenvalues of 𝑀 are
he Floquet multipliers of the dynamical system (Eqs. (9a)–(9f)). The
esult |𝜌1| < 1 predicts the limit cycle is asymptotically stable [57],
s observed in the numerical simulations in Fig. 6A with 𝐵𝐶 and

converging to steady state values. Fig. 6B shows the downstream
nfluences of this behavior on reducing the amplitudes of 𝑇𝐻 and
𝐴𝑂. This result has important implications for the circadian clock’s

nfluences on dopamine, as we will discuss in the next section. Though
ot depicted in Fig. 7, taking large enough 𝑥 can result in |𝜌1| ≥
so that the solution loses periodicity according to Floquet theory.
owever, in our model we treat 𝑥 > 1 as nonphysical behavior and

imply note that this separate bifurcation exists.

.2. Physiological implications

The condition 𝑟1 < 𝑟∗1(𝑥) with 𝑥 > 0 is interesting biologically
ecause {𝑃𝑖}4𝑖=1, 𝑅𝐸𝑉 , and 𝑅𝑂𝑅 have circadian rhythms while 𝐵𝐶 and
converge to steady state values. In the model, 𝐵𝐶 and 𝑆 do not need

o oscillate for the clock to generate circadian rhythms. In the Kim
t al. simple model [38], the concentration of activator BMAL1-CLOCK
s treated as a constant, and the solution is oscillatory anyway.

In experiments, Per mutant mice display arrhythmic activity under
onstant darkness and rhythms are restored under light–dark condi-
ions [12,13]. Consistent with these results, circadian rhythms in the
7

ree running model are abolished for 𝑟1 < 𝑟∗1(0) = 0.3 where the
roduction rate of PER is relatively low, but become entrained in the
resence of light–dark variation. The light-dependent value 𝑟1 = 𝑟∗1(𝑥) is
he boundary equilibrium bifurcation point in the model with 𝐵𝐶 > 𝑃4
nd 𝑆 ≤ 𝑅𝐸𝑉 for 𝑟1 < 𝑟∗1(𝑥), and takes the form of a Hopf bifurcation in
he free running model (Fig. 5A). The model is intrinsically oscillatory
or 𝑟1 > 𝑟∗1(𝑥) and not for 𝑟1 < 𝑟∗1(𝑥). In the presence of light–dark
ariation (𝑥 > 0), light forcing influences the intrinsic rhythms for
1 > 𝑟∗1(𝑥) and generates new oscillations for 𝑟1 < 𝑟∗1(𝑥).

Circadian variation of dopamine is essential for healthy modulation
f many important physiological functions such as hunger, sleep, and
ood; and abnormal rhythms exacerbate DA-related conditions such

s Parkinson’s and mood disorders [58]. For 𝑟1 < 𝑟∗1(𝑥) in the model,
he core clock variables {𝑃𝑖}4𝑖=1 display regular circadian rhythms. In
ontrast, 𝑇𝐻 and 𝑀𝐴𝑂 activities vary by less than 5% (see Fig. 6B),
nd as a result 𝑒𝐷𝐴 varies by less than 1% (not graphed). 𝑇𝐻 is
odulated by 𝑅𝐸𝑉 and 𝑅𝑂𝑅, which are activated by 𝐵𝐶; and 𝑀𝐴𝑂 is
irectly activated by 𝐵𝐶. Therefore, it makes sense that the decoupled
teady state behavior of 𝐵𝐶 when 𝑟1 < 𝑟∗1(𝑥) has significant downstream
ffects on DA. Importantly, the decoupling behavior in the model
an be connected to real biological observations. Experiments in [5]
ave shown that circadian rhythms in Per and Cry can persist in the
bsence of Bmal1 and Clock rhythms. Based on our model results, the
ecoupling of circadian clock variables is a possible route to disrupted
A rhythms.

Bmal1 disruptions in mice have also led to arrhythmic circadian
ehavior in the absence of light [14,15]. Interestingly, mice with
he Bmal1 deletion adapted better to light–dark variation than those
ithout the Bmal1 deletion [15]. Yang et al. [15] propose that this is
ue to the absence of an intrinsic oscillator, and our model confirms
his idea. Reducing Bmal1 production itself by 90% in the model
esults in protein levels that correspond to Case 4. This Bmal1 mutation
auses the model to converge to steady state behavior in free running
onditions (not shown). While decoupling does not occur in the Case 4
odel, light forcing drives 24-h oscillations in clock variables with very
inimal variation in 𝑆 and 𝐵𝐶. As a result, we see minimal variation

n 𝑇𝐻 and 𝑀𝐴𝑂, and consequently in 𝑒𝐷𝐴.
The [15] experiments also suggest that Bmal1 deletion may be ben-

ficial in some settings because it allows easier entrainment of mouse
ocomotor activity to light. Desynchronization between the internal
lock and the light–dark cycle increases the risks for metabolic and
ardiac dysfunction [17], so treating any clock misalignment would
e beneficial in some ways. However, while Bmal1 deletion may help
o restore circadian rhythms in locomotor activity with external light
orcing, our model demonstrates that such a therapy could have un-
ntended consequences, such as in dopamine regulation. Bmal1 dele-
ion is already not ideal as it abolishes circadian variation of blood
ressure [15].
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𝑥
𝑥

Fig. 8. Quasiperiodicity in the mathematical model. At 𝑟1 = 0.375, the model dynamics changes in response to light amplitude 𝑥. The times series of 𝑃2 for each of 𝑥 = 0,
= 0.1, and 𝑥 = 0.3 is plotted in blue in panels A-C, respectively. The peaks (or local maxima) of each curve are marked with an orange ‘x’ to help visualize periodicity. For
= 0.1, 𝑃2 has a secondary frequency, which we define as the period of the peaks (panel B). The curves in all three panels are plotted relative to the peak expression of 𝑃2 in

panel A.
As in the [15] experiments, circadian rhythms in the model with
Bmal1 disruption are eliminated in constant darkness but become
entrained to light–dark variation. Experimentally, such clock behavior
may be hard to distinguish from the dynamics in the Case 3 example
from Fig. 6. However, it is important to draw a distinction. In Fig. 6,
a low transcription rate of PER elevates BMAL1-CLOCK and REV-ERBs,
thereby lowering Bmal1 so that 𝑆 ≤ 𝑅𝐸𝑉 ; and in the Bmal1 mutation
simulated in the model, Bmal1 disruption is directly induced and results
in lower levels of all circadian variables such that 𝑆 > 𝑅𝐸𝑉 . Although
they would appear qualitatively similar under constant dark versus
light–dark experiments, these two phenotypes differ in the relationship
between Bmal1 and REV-ERBs and may require different therapeutic
targets.

The model serves as evidence that seemingly healthy circadian
rhythms may have harmful downstream influences, and that the rela-
tionships between clock proteins may help to characterize the under-
lying dynamics. In Sections 5 and 6 , we study how light input and
the production rate of PER are connected to quasiperiodic and chaotic
behaviors caused by misalignment in frequency.

5. Quasiperiodicity and chaos

For 𝑟1 > 𝑟∗1(0) = 0.3, the free running or intrinsic model is periodic as
we have observed in Fig. 4A–B, and with 𝑟1 = 0.5 the limit cycle has a
period of 23.5 h. In Fig. 4C–D, the model converged to a 24-h limit cycle
with sufficiently strong light forcing (with amplitude 𝑥 = 0.3). In this
section, we are interested in understanding what happens when 𝑟1 and
𝑥 are perturbed. In particular, we study some quasiperiodic and chaotic
behaviors and connect these results with experimental observations.

5.1. Quasiperiodic dynamics in the core circadian clock

We observed that quasiperiodic behavior exists in the model by
experimenting with 𝑟1 and 𝑥. Quasiperiodic behavior occurs when the
ratio between two frequencies of an attractor is irrational, and can
be observed as trajectories winding around endlessly on a torus [59].
In Fig. 8, all three panels were computed with fixed 𝑟1 = 0.375 and
graphed relative to the peak in panel A. In the free running model for
𝑟1 = 0.375, the time series for 𝑃2 is 21.6-h periodic; see Fig. 8A. In
Fig. 8B, we observe quasiperiodicity in which the time series displays a
beat phenomenon with two frequencies, near 21.8 h and 236.5 h. Using
the Wolf algorithm [51], we computed the largest Lyapunov exponent
to be zero. We will further confirm quasiperiodicity in Fig. 11 later
in this section. In Fig. 8C with 𝑥 = 0.3, the model is entrained to the
light–dark cycle and is 24-h periodic.

Fig. 8 suggests that 𝑟1 and 𝑥 play important roles in the periodicity
of the model, and this makes sense biologically. The production rate
of PER and the amplitude of light both have important roles in the
periodicity of the circadian clock. Lowering clock transcription rates
results in shorter period lengths [60], and changes in circadian rhythms
8

are dependent on light intensity [3,61]. True quasiperiodic behavior
cannot be observed experimentally due to noise and measurement
limitations, but quasiperiodicity is still meaningful biologically and can
be characterized in experimental contexts [16,62]. It is known that
weaker light intensity leads to less effective circadian entrainment in
humans [61] and West et al. [17] have demonstrated that desynchrony
between the external light–dark cycle and the internal clock in mice
creates significant physiological disturbances. In mouse experiments by
Erzberger et al. [16], changes to the period of the light–dark schedule
often resulted in quasiperiodic activity patterns, and these patterns
were distinguished using actograms and spectral analyses. These ac-
tograms graph periods of activity over time, and quasiperiodic patterns
can be observed as phase drifting. To connect our model results with
this behavior, we have visualized the time series in Fig. 9A as a model
actogram, with 6 h before and after 𝑃2 peaks indicating periods of
activity. Consistent with the experiments, the quasiperiodic behaviors
in the model are also observable as phase drifting. With this low
production rate for PER (𝑟1 = 0.375), the model behavior does not
become fully entrained to the light–dark cycle until light amplitude is
increased to about 𝑥 = 0.274; see Fig. 9B.

In our model, we further characterized periodicity across variation
in 𝑟1 and 𝑥 as follows: We computed Poincaré sections containing points
where 𝑃2 has a peak (or local maximum) in each light case for 0.1 ≤ 𝑟1 ≤
1. In Fig. 10, we plotted all 𝑃2 peaks for 30,000 h for the four light cases.
In Fig. 10A, 𝑃2 peaks across each time series for varying 𝑟1 line up at
the same concentration, indicating that each time series is periodic. For
𝑟1 < 0.3, the model variables converge to stable steady state solutions
as discussed in Section 3.2, and the 𝑃2 steady states are indicated by
the dashed blue curve. In Fig. 10B–D with 𝑥 > 0, we observe periodicity
for 𝑟1 < 𝑟∗1 where the model is not intrinsically oscillatory, and this is
consistent with our results in Section 4. Near 𝑟1 = 0.5 in Fig. 10B, 𝑃2 is
periodic. However, the model is non-periodic in the filled-in bands, and
simulations and Lyapunov exponents suggest that the 𝑃2 time series for
𝑟1 in those regions is similar in behavior to the example given in Fig. 8B.
In Fig. 8B, we have indicated 𝑃2 peaks with an orange ‘x’, and one can
see how the 𝑃2 peaks for 𝑟1 = 0.375 in Fig. 10B correspond to the peaks
observed in Fig. 8B. Computations of the largest Lyapunov exponent for
each 𝑟1 suggest quasiperiodicity across all non-periodic regions in panel
B and most non-periodic regions in panels C and D with indications of
chaos for few 𝑟1.

5.2. Downstream influences on dopamine

Both dopamine synthesis and degradation are influenced by the
circadian clock, and the dopaminergic system is known to regulate
mood [2,33,63]. Polymorphisms in clock genes are linked to DA-related
neurological and psychiatric conditions [2]. Those with Parkinson’s dis-
ease often experience sleep and circadian disorders [64,65], and adults
with ADHD often experience a lack of circadian rhythmicity [28].
Treating circadian disruptions has helped to ameliorate symptoms of
depression and bipolar disorder [63].
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Fig. 9. Quasiperiodic patterns and dependence on light amplitude. For 𝑟1 = 0.375 and 𝑥 = 0.1 the 𝑃2 time series from Fig. 8 is plotted as an actogram in panel A, with
orizontal bars indicating 6 h before to 6 h after each 𝑃2 peak. As in [16], quasiperiodic behavior is observed as phase drifting. In panel B, all peak-to-peak differences of the 𝑃2
ime series are plotted (black points) for varying light amplitude 𝑥. The horizontal blue line indicates 24-h periodicity.
Fig. 10. Poincaré sections using peaks of 𝑃2. The peaks of the times series of 𝑃2 were tracked for 30,000 h for 𝑥 = 0 (panel A), 𝑥 = 0.1 (panel B), 𝑥 = 0.2 (panel C), and 𝑥 = 0.3
panel D). Panel A: In the free running model, 𝑃2 converges to a stable limit cycle for 𝑟1 > 𝑟∗1(0) = 0.3, as in Fig. 5A. The peaks of 𝑃2 coincide with each other, indicating the
ime series is periodic. For 𝑟1 < 𝑟∗1(0) = 0.3, the time series for 𝑃2 converges to a steady state value (dashed blue curve). Panels B–D: For the model under the light–dark cycle,
ariation in 𝑟1 leads to quasiperiodic solutions, as in Fig. 8. In panel B, all ‘‘bands’’ correspond to quasiperiodic regions where for each 𝑟1 the largest Lyapunov exponent (not
hown) is 0. In panels C and D, Lyapunov exponents suggest small regions of chaos within 0.65 < 𝑟1 < 0.7 and 0.7 < 𝑟1 < 0.83, respectively.
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In our mathematical model, we observed some circadian disruptions
n the form of quasiperiodic and chaotic behavior caused by incommen-
urate frequencies of the external light–dark cycle and internal clock.
he parameter values in Fig. 8B generated quasiperiodic behavior in
lock variables. This quasiperiodicity can be observed in downstream
A as well; see Fig. 11A-C. The peaks of 𝑒𝐷𝐴 in Fig. 11A closely

ollow the peaks of 𝑇𝐻 , and the 𝑒𝐷𝐴 time series has a secondary
eriod close to 236.5 h. The relationship between 𝑒𝐷𝐴, 𝑇𝐻 , and 𝑀𝐴𝑂
an be observed in Fig. 11B, where the model trajectory for 480 h
raps around a torus. Computations for a much longer time span

how that the trajectory continues to densely wrap around the torus,
upporting quasiperiodicity. Additionally, the peak to peak distances
n the 𝑒𝐷𝐴 time series fluctuate from about 20.5 to 22.5 h; see 11C.
xperimentally, this could be observed as phase drifting where peak ex-
ression is gradually shifted each day, such as in non-24-h sleep–wake
isorder [66].

Lyapunov exponent computations suggested chaos for particular
arameter values. As discussed earlier, chaotic clock behavior has been
dentified in previous circadian models and has potential implications
or physiology. Gonze and Goldbeter [18] have studied chaos in a cir-
adian model consisting of a single feedback loop, and have shown that
he periodic versus chaotic dynamics in their model depends strongly
n the form and amplitude of light input, which influences PER tran-
cription. Similarly, we observed in Section 5.1 that the transcription
ate of Per and the light amplitude both have a significant impact on
he model dynamics. To exemplify chaos in the model, we chose to look
t the behavior in 𝑒𝐷𝐴 for 𝑥 = 0.3 and 𝑟1 = 0.75. The clock’s chaotic
ehavior has downstream influences on 𝑒𝐷𝐴; in Fig. 11D, the relative
𝐷𝐴 time series fluctuates between 0.9 and 1 but is non-periodic.
eaks still shortly follow 𝑇𝐻 peaks, and the 3 dimensional trajectory
9

s graphed in panel E. Peak to peak distances vary from about 23 to
5 h (panel F), resulting in much larger disturbances to DA rhythms
n relation to the 24-h light–dark cycle. Such clock behavior disrupts
A dynamics and could exacerbate DA related conditions. However,

he parameter value 𝑟1 = 0.75 is outside the ‘‘normal’’ parameter range
or this model and we simply note that such chaotic behavior exists
or some large perturbations in 𝑟1. In the next section, we measure
ow periodicity and quasiperiodicity depend on 𝑟1 and 𝑑𝑏𝑐 within their

‘normal’’ ranges for various light intensities, and discuss how period
omeostasis depends on light–dark variation.

. Period homeostasis

The mammalian circadian clock is characterized by a period of
bout 24 h, and environmental or genetic perturbations have the
otential to disrupt periodicity [67,68]. Amazingly, in many cases near-
4-h rhythms can be maintained even in the absence of external cues.
n the free running model, we computed period as 𝑟1 and 𝑑𝑏𝑐 varied
5% below and 25% above their original values: 𝑟1 = 0.5 and 𝑑𝑏𝑐 = 0.3;
ee Fig. 12. The filled regions indicate periodic behavior, and period
aries from about 20 to 30 h across this parameter regime. Generally,
s 𝑟1 and 𝑑𝑏𝑐 move away from their original values, the period moves
way from 24 h.

When the light–dark cycle is introduced, the model behavior in all
f the parameter regime of interest is oscillatory; see Fig. 13A–D. For a
mall light amplitude (𝑥 = 0.01), period dependence on variations in 𝑟1
nd 𝑑𝑏𝑐 resembles that of the free running model (𝑥 = 0) for much of
1 and 𝑑𝑏𝑐 . Without the light–dark forcing, the model behavior is non-
scillatory for low 𝑟 and low 𝑑 , but with light–dark forcing there
1 𝑏𝑐
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Fig. 11. Quasiperiodicity and chaos in DA dynamics. The mathematical model in this paper is connected with the extant DA model in [36] to predict extracellular DA (𝑒𝐷𝐴)
rhythms with 𝑥 = 0.1 and 𝑟1 = 0.375 (panels A-C); and 𝑥 = 0.3 and 𝑟1 = 0.75 (panels D–F). The 𝑇𝐻 time series (gray) in panels A and D are influenced by the quasiperiodic and
chaotic behaviors of 𝑅𝐸𝑉 , 𝑅𝑂𝑅, and 𝐵𝐶, leading to quasiperiodic and chaotic dynamics in 𝑒𝐷𝐴 (yellow). Panels B and E show the trajectories of 𝑒𝐷𝐴 vs. 𝑇𝐻 vs. 𝑀𝐴𝑂 for
80 h corresponding to panels A and D, respectively. Panels C and F indicate peak to peak distances of the 𝑒𝐷𝐴 time series for 18,000 h with the parameters from A and D,

respectively. 𝑇𝑘 indicates the time distance between the 𝑘th and (𝑘+1)th peaks and 𝑇𝑘+1 indicates the time distance between the (𝑘+1)th and (𝑘+2)th peaks. In the quasiperiodic
ase, the peak to peak distances fluctuate from about 20.5 to 22.5 h (panel C). In the chaotic case the peak to peak distances fluctuate from about 23 to 35 h (panel F).
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Fig. 12. Period versus 𝑟1 and 𝑑𝑏𝑐 for the free running model. The period of the
odel behavior with light input 𝑥 = 0 ranges from 20 to 30 h for 𝑟1 and 𝑑𝑏𝑐 parameter

alues between 25% below and 25% above their original values. The white areas
ndicate steady state behaviors where the solution does not oscillate.

s an entrained oscillatory response; see lower left corners of Fig. 12
ersus Fig. 13A. As in Section 5.1, external forcing drives new, 24-h
scillations in parameter regimes where the model is not intrinsically
scillatory. In Fig. 13A, the middle light blue section corresponds to
4-h oscillations, and this region expands as 𝑥 increases. When 𝑥 = 0.3,
he clock has a period of 24 h everywhere; see Fig. 13D.

In Section 5, we observed some quasiperiodic behavior in the pres-
nce of light input. The quasiperiodic behaviors throughout our pa-
ameter regime of interest are characterized by a beating phenomenon
ike in Fig. 8B. For each 𝑟1 and 𝑑𝑏𝑐 , we created an interpolating
urve through the 𝑃2 peaks and computed the period of this curve as
he secondary period. We have plotted these values across different

and 𝑑 in Fig. 13E–H for 𝑥 = 0.01, 𝑥 = 0.1, 𝑥 = 0.2, and
1 𝑏𝑐 c

10
= 0.3, respectively. With a small light amplitude of 𝑥 = 0.01, the
odel behavior is quasiperiodic for much of the intrinsically oscillatory
arameter regime; compare the behaviors in Fig. 13A and E to that
f the free running model shown in Fig. 12. In parameter regions
here solutions previously converged to steady state values in the

ree running model, the clock is now periodic and entrained to the
ight–dark cycle. Secondary periods above 212 hs were not computed.
n infinitely long secondary period produces the same behavior as in
onstant amplitude oscillations. In Fig. 13E–G, we observe long but
inite secondary periods in parts of the regions characterized by a 24-h
rimary period. Here, the model is partially entrained since the primary
eriod is 24 h but the amplitude varies. As 𝑥 is increased to 0.3, the
uasiperiodicity is eliminated and the clock is fully entrained to the
ight–dark cycle for all 𝑟1 and 𝑑𝑏𝑐 in the ‘‘normal’’ parameter regime;
ee Fig. 13H.

. Conclusion

We have reduced a mathematical model of the mammalian circa-
ian clock and its downstream influences on the dopaminergic system.
he full model is detailed in [35]. The model in this paper displays
ear-24-h rhythmicity both with and without light input and retains
ey features of the circadian clock. The model is capable of different
ynamics, including decoupling, quasiperiodicity, and chaos, and these
ehaviors can help explain experimental observations. We demon-
trated that Bmal1 and BMAL1-CLOCK can lose rhythmicity even when
ther clock variables remain periodic, and this leads to low amplitude
scillations in dopaminergic variables. We characterized quasiperiod-
city and chaos in the model, showed how these dynamics influence
opamine rhythms, and discussed these results in connection with
xperiments and clinical observations. Also, sufficiently strong light
ariation helped to improve period homeostasis and reduce regions of
uasiperiodicity. The model in this paper can be used to further study
he impact of different light–dark conditions on the circadian clock,
nvestigate potential disruptions in diurnal variation of DA, and explore
herapeutic targets for ameliorating these disruptions. For example,
xperimentalists have proposed that restless legs syndrome (RLS) is

haracterized by increased circadian variation in dopamine metabolites
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Fig. 13. Period (panels A–D) and secondary period (panels E–H) versus 𝑟1 and 𝑑𝑏𝑐 for the model with light input. The model behavior is oscillatory for all 𝑟1 and 𝑑𝑏𝑐
values in the parameter regime of interest (panels A–D). The model with light input has a secondary Hopf bifurcation which leads to secondary oscillations. Secondary period
computations (log2 scale) versus 𝑟1 and 𝑑𝑏𝑐 are plotted in panels E–H. Secondary periods above 212 = 4096 h were not computed. Light blue regions in panels E–H indicate either
secondary periods above 4096 h or no quasiperiodicity. As the light input 𝑥 is increased from left to right, the solution becomes entrained to the light–dark cycle, with period
24 h, for a larger range of parameter values (panels A–D). At 𝑥 = 0.3, the model behavior is fully entrained with no secondary oscillations (panel H).
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and low levels of iron, a cofactor for TH [29,69,70]. Dopaminergic
treatments help relieve RLS symptoms [71]. The mathematical model
studied in this paper could be used to investigate the pathophysi-
ology and treatment of conditions like RLS that are linked to both
circadian rhythms and the dopaminergic system. In addition, there is
evidence that the dopaminergic system reciprocally affects the circa-
dian clock [72–74]. Extending the model to consider these findings will
be the subject of future work.
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Appendix. The condition to avoid finite-time blow-up

Here, we calculate a condition for proper stabilization of 𝑆. In some
simulations of system ((4)a–h), blow-up behavior was observed, with
concentrations diverging as a finite critical time is approached, 𝑡 → 𝑡𝑐 .
Numerical results showed that 𝑆 would grow most rapidly, followed by
𝐶 and others. To understand how to avoid this unphysical behavior,
e analyze this class of dynamics in the model.

The dominance of 𝑆 and 𝐵𝐶 in these dynamics allow us to restrict
attention to Case 4 (𝑆 > 𝑅𝐸𝑉 and 𝐵𝐶 > 𝑃4) from Section 4. We will
how that the driving influence of 𝑆 motivates re-arranging the system
n the ordering

𝑑𝑆
𝑑𝑡

+ 𝑑𝑠𝑆 = 𝛼(𝑆 − 𝑅𝐸𝑉 )𝑅𝑂𝑅 + 𝛽 (A.1a)
𝑑𝐵𝐶
𝑑𝑡

+ 𝑑𝑏𝑐𝐵𝐶 = 𝛽𝑏𝑐𝑆 (A.1b)
𝑑𝑅𝑂𝑅
𝑑𝑡

+ 𝑑𝑟𝑜𝑟𝑅𝑂𝑅 = 𝑟𝑟𝑜𝑟(𝐵𝐶 − 𝑃4) (A.1c)
𝑑𝑅𝐸𝑉

𝑑𝑡
+ 𝑑𝑟𝑒𝑣𝑅𝐸𝑉 = 𝑟𝑟𝑒𝑣(𝐵𝐶 − 𝑃4) (A.1d)
𝑑𝑃1
𝑑𝑡

+ 𝑟2𝑃1 = 𝑟1𝐿(𝑡, 𝑥)(𝐵𝐶 − 𝑃4) (A.1e)
𝑑𝑃2 + 𝑟 𝑃 = 𝑟 𝑃 (A.1f)

𝑑𝑡 3 2 2 1 m
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𝑑𝑃3
𝑑𝑡

+ 𝑟4𝑃3 = 𝑟3𝑃2 (A.1g)
𝑑𝑃4
𝑑𝑡

+ 𝑑4𝑃4 = 𝑟4𝑃3. (A.1h)

Each of Eqs. ((A.1)b–h) can individually be viewed as a linear first order
rate equation, with an inhomogeneous forcing due to other species and
general solution of the form:

𝑑𝑈
𝑑𝑡

+ 𝑘𝑈 = 𝐹 (𝑡) ⟹ 𝑈 (𝑡) = 𝐶𝑒−𝑘𝑡 + 𝑒−𝑘𝑡 ∫

𝑡

0
𝐹 (𝜏)𝑒𝑘𝜏 𝑑𝜏. (A.2)

or a singular forcing term, 𝐹 (𝑡) = 𝐴∕(𝑡𝑐 − 𝑡)𝛾 as 𝑡 → 𝑡𝑐 with 𝛾 > 1, we
an use the asymptotics of the exponential integral special function [75,
hap 6] to obtain the leading order estimate of the solution as

(𝑡) ∼ 𝐴
𝛾 − 1

(𝑡𝑐 − 𝑡)−𝛾+1 as 𝑡 → 𝑡𝑐 . (A.3)

his can also be interpreted as 𝑈 (𝑡) being dominated by the particular
olution term, and to leading order can be written as 𝑈 (𝑡) ∼ ∫ 𝐹 (𝑡) 𝑑𝑡
or any 𝛾. The integration means that the solution is less singular than
ts forcing term. Consequently, the ordering of ((A.1)a–h) arranges the
olutions from most to least singular:

≫ 𝐵𝐶 ≫ {𝑅𝐸𝑉 ,𝑅𝑂𝑅, 𝑃1 } ≫ 𝑃2 ≫ 𝑃3 ≫ 𝑃4 as 𝑡 → 𝑡𝑐 .

his justifies the further simplifications 𝑆−𝑅𝐸𝑉 ∼ 𝑆 and 𝐵𝐶−𝑃4 ∼ 𝐵𝐶.
The equation for 𝑆 is special because there 𝑆 also appears in a

nonlinear forcing term. If we assume the form 𝑆(𝑡) ∼ 𝐶∕(𝑡𝑐 − 𝑡)𝑘 with
> 2 then integrating equation ((A.1)b–d) we get

𝐶 = 𝑂((𝑡𝑐−𝑡)−𝑘+1) 𝑅𝐸𝑉 = 𝑂((𝑡𝑐−𝑡)−𝑘+2) 𝑅𝑂𝑅 = 𝑂((𝑡𝑐−𝑡)−𝑘+2).

hen the dominant terms of ((A.1)a) reduce to
𝑑𝑆
𝑑𝑡

= 𝛼𝑆𝑅𝑂𝑅

and substituting in the power-law forms for 𝑆,𝑅𝐸𝑉 yields a balance
for the exponent, −𝑘 − 1 = −𝑘 − 𝑘 + 2. This yields 𝑘 = 3, justifying our
earlier assumptions and giving the overall blow-up behavior,

𝑆 = 𝑂((𝑡𝑐 − 𝑡)−3), 𝐵𝐶 = 𝑂((𝑡𝑐 − 𝑡)−2), {𝑅𝐸𝑉 ,𝑅𝑂𝑅, 𝑃1} = 𝑂((𝑡𝑐 − 𝑡)−1),

2 = 𝑂(ln(𝑡𝑐 − 𝑡)), 𝑃3 = 𝑂((𝑡𝑐 − 𝑡) ln(𝑡𝑐 − 𝑡)), 𝑃4 = 𝑂((𝑡𝑐 − 𝑡)2 ln(𝑡𝑐 − 𝑡)).

Having justified that in blow-up, 𝑆 ≫ 𝑅𝐸𝑉 ≫ 1, returning to
(A.1)a), we can re-write this equation as
𝑑𝑆
𝑑𝑡

= (𝛼𝑅𝑂𝑅 − 𝑑𝑠)𝑆 + 𝑜(𝑆). (A.4)

onsidering the sign of the linear growth term, we see that 𝑆(𝑡) will be
onotone increasing and grow without bound if the coefficient in this
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term is positive. Therefore, to avoid the possibility of generating this
blow-up behavior, we require that

𝑅𝑂𝑅(𝑡) <
𝑑𝑠
𝛼
. (A.5)
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